ArcGIS REST Services Directory Login
JSON | SOAP

NDF/Urban_Tree_Canopy_Assessments_2022 (MapServer)

View In:   ArcGIS JavaScript   ArcGIS Online Map Viewer   ArcGIS Earth   ArcGIS Pro

Service Description: Davey Resource Group utilized an object-based image analysis (OBIA) semi-automated feature extraction method to process and analyze current high-resolution color infrared (CIR) aerial imagery and remotely-sensed data to identify tree canopy cover and land cover classifications. The use of imagery analysis is cost-effective and provides a highly accurate approach to assessing your community's existing tree canopy coverage. This supports responsible tree management, facilitates community forestry goal-setting, and improves urban resource planning for healthier and more sustainable urban environments. Advanced image analysis methods were used to classify, or separate, the land cover layers from the overall imagery. The semi-automated extraction process was completed using Feature Analyst, an extension of ArcGIS®. Feature Analyst uses an object-oriented approach to cluster together objects with similar spectral (i.e., color) and spatial/contextual (e.g., texture, size, shape, pattern, and spatial association) characteristics. The land cover results of the extraction process was post-processed and clipped to each project boundary prior to the manual editing process in order to create smaller, manageable, and more efficient file sizes. Secondary source data, high-resolution aerial imagery provided by each UTC city, and custom ArcGIS® tools were used to aid in the final manual editing, quality checking, and quality assurance processes (QA/QC). The manual QA/QC process was implemented to identify, define, and correct any misclassifications or omission errors in the final land cover layer.

Map Name: Urban Tree Canopy Assessments 2022

Legend

All Layers and Tables

Dynamic Legend

Dynamic All Layers

Layers: Description: Davey Resource Group utilized an object-based image analysis (OBIA) semi-automated feature extraction method to process and analyze current high-resolution color infrared (CIR) aerial imagery and remotely-sensed data to identify tree canopy cover and land cover classifications. The use of imagery analysis is cost-effective and provides a highly accurate approach to assessing your community's existing tree canopy coverage. This supports responsible tree management, facilitates community forestry goal-setting, and improves urban resource planning for healthier and more sustainable urban environments. Advanced image analysis methods were used to classify, or separate, the land cover layers from the overall imagery. The semi-automated extraction process was completed using Feature Analyst, an extension of ArcGIS®. Feature Analyst uses an object-oriented approach to cluster together objects with similar spectral (i.e., color) and spatial/contextual (e.g., texture, size, shape, pattern, and spatial association) characteristics. The land cover results of the extraction process was post-processed and clipped to each project boundary prior to the manual editing process in order to create smaller, manageable, and more efficient file sizes. Secondary source data, high-resolution aerial imagery provided by each UTC city, and custom ArcGIS® tools were used to aid in the final manual editing, quality checking, and quality assurance processes (QA/QC). The manual QA/QC process was implemented to identify, define, and correct any misclassifications or omission errors in the final land cover layer.

Service Item Id: 7891be45ef3f4f8493a01dc18f912dac

Copyright Text: Nevada Division of Forestry, Davey Resource Group.

Spatial Reference: 102100  (3857)


Single Fused Map Cache: false

Initial Extent: Full Extent: Units: esriMeters

Supported Image Format Types: PNG32,PNG24,PNG,JPG,DIB,TIFF,EMF,PS,PDF,GIF,SVG,SVGZ,BMP

Document Info: Supports Dynamic Layers: true

MaxRecordCount: 2000

MaxImageHeight: 4096

MaxImageWidth: 4096

Supported Query Formats: JSON, geoJSON, PBF

Supports Query Data Elements: true

Min Scale: 0

Max Scale: 0

Supports Datum Transformation: true



Child Resources:   Info   Dynamic Layer

Supported Operations:   Export Map   Identify   QueryLegends   QueryDomains   Find   Return Updates